条鰭魚類根幹の系統進化
July 12, 2017. Jun Inoue
総説
Betancur-R R (2017)
Phylogenetic classification of bony fishes. BMC Evol. Biol.

Sallan LC (2014)
Major issues in the origins of ray-finned fish (Actinopterygii) biodiversity. Biol. Rev. Camb. Philos. Soc. 89(4):950–971.

総説.分子分析による Paleozoic (251MYA より前) divergence dates と crown teleosts の出現 (Mexo)


条鰭魚類下位群の系統関係

Giles S, Xu GH, Near TJ, & Friedman M (2017)
Early members of 'living fossil' lineage imply later origin of modern ray-finned fishes. Nature.

Sallan, L. (2016)
Fish 'tails' result from outgrowth and reduction of two separate ancestral tails. Current Biology 26: R1224-1225.

Friedman M & Smith A (2015)
The early evolution of ray-finned fishes. Palaeontology 58(2):213-228.

総説.

Graham JB, et al. (2014)
Spiracular air breathing in polypterid fishes and its implications for aerial respiration in stem tetrapods. Nat Commun 5:3022.

Broughton RE, Betancur RR, Li C, Arratia G, & Orti G (2013)
Multi-locus phylogenetic analysis reveals the pattern and tempo of bony fish evolution. PLoS Curr. 5.

Crow KD, Smith CD, Cheng JF, Wagner GP, & Amemiya CT (2012)
An independent genome duplication inferred from Hox paralogs in the American paddlefish--a representative basal ray-finned fish and important comparative reference. Genome Biol Evol 4(9):937–953.

Ward AB & Kley NJ (2012)
Effects of precaudal elongation on visceral topography in a basal clade of ray-finned fishes. Anat Rec (Hoboken) 295(2):289-297.

Suzuki D, Brandley MC, & Tokita M (2010)
The mitochondrial phylogeny of an ancient lineage of ray-finned fishes (Polypteridae) with implications for the evolution of body elongation, pelvic fin loss, and craniofacial morphology in Osteichthyes. BMC Evol. Biol. 10(21).

Grande L (2010)
An Empirical Synthetic Pattern Study of Gars (Lepisosteiformes) and Closely Related Species, Based Mostly on Skeletal Anatomy. The Resurrection of Holostei. Copeia (2a):1-863.

Santini, F., Harmon, L. J., Carnevale, G. & Alfaro, M. E. (2009).
Did genome duplication drive the origin of teleosts? A comparative study of diversification in ray-finned fishes. BMC Evolutionary Biology 9, 194.

Peng Z, et al. (2007)
Age and biogeography of major clades in sturgeons and paddlefishes (Pisces: Acipenseriformes). Mol. Phylogen. Evol. 42(3):854–862.


真骨魚類は淡水起源か

Wiens JJ (2017)
What explains patterns of biodiversity across the Tree of Life?: New research is revealing the causes of the dramatic variation in species numbers across branches of the Tree of Life. Bioessays 39(3).

Miller EC & Wiens JJ (2017)
Extinction and time help drive the marine-terrestrial biodiversity gradient: is the ocean a deathtrap? Ecol. Lett. 20(7):911-921.

Betancur RR, Orti G, & Pyron RA (2015)
Fossil-based comparative analyses reveal ancient marine ancestry erased by extinction in ray-finned fishes. Ecol. Lett. 18(5):441–450.

化石種を入れると真骨魚類は海起源と推定される.このことは,アミアやアロワナの化石種には,海水に生育する種が存在した事実と一致 (P448左中). 
 条鰭魚類の系統樹に海,淡水,汽水など生息域をマッピングし,祖先の生息域を推定.条鰭魚類祖先種の生息域は,原生種のみの解析だと淡水域と推定されてしまうが,化石種を入れると海域となる.
 淡水より海水の生物の方が化石になりやすいことが知られるため (e.g., Shipman, 1993),化石種を入れた解析は海起源になりやすいとも考察 (P448左下).このため祖先種の生息域推定は,海水と淡水の間となるが,化石種を用いないと推定生息域が淡水に偏ってしまうと主張.さらに,海の方が種の入れ替わりが激しいため,海域はスズキ類など派生的なグループにとってかわられる一方で,淡水域は根幹から分岐する古代魚などの refugia (退避地) となったと指摘 (P448右中).

Yancey PH, Gerringer ME, Drazen JC, Rowden AA, & Jamieson A (2014)
Marine fish may be biochemically constrained from inhabiting the deepest ocean depths. Proc Natl Acad Sci U S A 111(12):4461-4465.

Erisman BE, Petersen CW, Hastings PA, & Warner RR (2013)
Phylogenetic perspectives on the evolution of functional hermaphroditism in teleost fishes. Integr. Comp. Biol. 53(4):736-754.

Bernardi G (2013)
Speciation in fishes. Mol. Ecol. 22(22):5487-5502.


Grosberg RK, Vermeij GJ, & Wainwright PC (2012)
Biodiversity in water and on land. Curr. Biol. 22(21):R900-903.

Vega, G.C. & Wiens, J.J. (2012).
Why are there so few fish in the sea? Proc. R. Soc. B, 282, 1–7.

原生する海に生息するすべての条鰭魚類は淡水域に起源すると指摘.

Parenti, L.R. (2008).
Life History Patterns and Biogeography: an Interpretation of Diadromy in Fishes1. Ann. Mo. Bot. Gard., 95, 232–247.



真骨魚類下位群の系統関係

アロワナ類
Lavoue S (2016)
Was Gondwanan breakup the cause of the intercontinental distribution of Osteoglossiformes? A time-calibrated phylogenetic test combining molecular, morphological, and paleontological evidence. Mol. Phylogen. Evol. 99:34-43.

Lavoué, S., 2015.
Testing a time hypothesis in the biogeography of the arowana genus Scleropages (Osteoglossidae). J. Biogeogr. 42, 2427–2439.

Lavoué, S., Miya, M., Arnegard, M.E., McIntyre, P.B., Mamonekene, V., Nishida, M.,
2011.
Remarkable morphological stasis in an extant vertebrate despite tens of millions of years of divergence. Proc. R. Soc. B 278, 1003–1008.

Lavoué, S., Miya, M., Arnegard, M.E., Sullivan, J.P., Hopkins, C.D., Nishida, M., 2012.
Comparable ages for the independent origins of electrogenesis in African and
South American weakly electric fishes. PLoS One 7, 36287.



カライワシ類
Chen JN, Samadi S, & Chen WJ (2015)
Elopomorpha (Teleostei) as a New Model Fish Group for Evolutionary Biology and Comparative Genomics. Evolutionary Biology: Biodiversification from Genotype to Phenotype, ed Pierre P (Springer), pp 329–344.

総説.カライワシ類をモデルシステムとして提唱.

Dornburg, A., Friedman, M., Near, T.J., 2015.
Phylogenetic analysis of molecular and morphological data highlights uncertainty in the relationships of fossil and living species of Elopomorpha (Actinopterygii: Teleostei). Mol. Phylogenet. Evol. 89, 205–218.

Albula, Pterothrissus, notacanthiforms, anguilliforms の関係に注目して時間軸付き系統樹を推定.分子データ (6 核遺伝子) と形態データ (化石)を合わせた解析を行う.

Chen J-N, López JA, Lavoué S, Miya M, Chen W-J (2014)
Phylogeny of the Elopomorpha (Teleostei): evidence from six nuclear and mitochondrial markers. Mol Phylogenet Evol 70:152–161

Santini F, Kong X, Sorenson L, Carnevale G, Mehta RS, Alfaro ME (2013)
A multi-locus molecular timescale for the origin and diversification of eels (Order: Anguilliformes). Mol Phylogenet Evol 69:884–894

フウセンウナギ類がウナギ目内部に分岐.ムカシウナギとホラアナゴが近縁と指摘.5 核遺伝子と 2 ミトコンドリア遺伝子を合わせた解析.

Tang KL, Fielitz C (2012)
Phylogeny of moray eels (Anguilliformes: Muraenidae), with a revised classification of true eels (Teleostei: Elopomorpha: Anguilliformes). Mitochondrial DNA 24:55–66

Chen W-J, Mayden RL (2010)
A phylogenomic perspective on the new era of Ichthyology. Bioscience 60:421–432



3R 全ゲノム重複
Braasch I, et al. (2014)
A new model army: emerging fish models to study the genomics of vertebrate Evo-Devo. J. Exp. Zool. B Mol. Dev. Evol. 324(4):316–341.

Martin KJ, Holland PWH (2014)
Enigmatic orthology relationships between Hox clusters of the African butterfly fish and other teleosts following ancient wholegenome duplication. Mol Biol Evol 31(10):2592–2611.

Kuraku S. (2013)
Impact of asymmetric gene repertoire between cyclostomes and gnathostomes. Semin. Cell Dev. Biol.

Braasch I, Postlethwait J (2012)
Polyploidy in fish and the teleost genome duplication. Polyploidy and Genome Evolution, eds Soltis PS, Soltis DE (Springer, Berlin), pp 341–383.