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Software of Dating

•Molecular Clock 

•Relaxed Molecular Clock

r8s

multidistribute



r8s

Michael J.  Sanderson

UC Davis

Estimation of rates and times 
based on ML, smoothing, or 
other methods.



Methods of r8s – 1

•LF (Langley-Fitch) “local molecular clock”

The user must indicate for every branch in the tree

which of the parameters are associated with it 

based on the biological feature (such as life 

history, generation time).

•NPRS (Nonparametric Rate Smoothing)
Relaxes the assumption of a molecular clock by 

using a least squares smoothing of local estimates

of substitution rates.  It relies on the observation 

that closely related lineages tend to have similar 

rates.



Methods of r8s - 2

log(p(X |R,T )) − λΦ(R) .

•PL (Penalized likelihood)

Combines a parametric model having a 

different substitution rate on every branch with 

a nonparametric roughness penalty.

Finds the combination of (      ) of R and T that 

obeys any constraints on node times and that 

maximizes,

R̃, T̃



PL method

X: data

R: rate

T: time

penalty function log likelihood

Maximize the following:

log(p(X |R,T )) − λΦ(R)

Φ(R) : penalty function

λ : it determines the 
contribution of this penalty 
function



PL method

Φ(R): penalty function

Penalty function is the sum of two parts (squared):

• Variance among rates for those branches that are 
directly attached to the root.

• Those branches that are not directly attached to the 
root.

λ : contribution of penalty function

• Cross-validation strategy selects the value of 

•          small, extensive rate variation over time.

•          large, clock like pattern of rates.

λ.

λ →
λ →

penalty function log likelihood

log(p(X |R,T )) − λΦ(R)



PL method

Yields an integer-valued estimate of the number of nucleotide
substitutions that have affected the sequence on each branch
of the tree.

Integer-valued estimate for a brach as if it were a directly 
observed realization from a Poisson distribution. The
mean value of the Poisson distribution is determined from R 
and T by the product of the average rate and time duration of 
the branch.

Note: r8s does not use sequences

• Not fully evaluate when finding R̃ and T̃ .

penalty functionlog likelihood

log(p(X |R,T )) − λΦ(R)



r8s – infile

Tree with branch length
from PAUP*

Total numbers of 
substitutions

Naming nodes

Fixing times for some nodes



r8s – infile

Constraining times to some 
nodes

Estimation method of rates
and times



r8s – terminal

./r8s -b -f Coe29b > Coe29b.out

infile outfile



r8s – outfile

RatesAges

Constraints

Node



r8s – outfile

ASCII tree

Tree in parentheses 
notation including branch 
length information



multidistribute

Jeffrey L. Thorne
North Carolina State University

Estimation of rates and times 
using Bayesian method.

The multidistribute consists of two programs:

• estbranches estimates branch lengths and their variance-
covariance matrix.

• multidivtime estimates rates and times using Bayesian 
method.



testseq.Gene1 Gene1.tree

Gene1.ctl

Gene1.out

modelinf.Gene1

hmmcntrl.dat

oest.Gene1

multicntrl.dat

tree.example
node.example
samp.example
ratio .example

tree.example
node.example
samp.example
ratio .example

oest.Gene2

example.tree

example.tree

"grep lnL Gene*.out"

"grep 'FINAL LIKE' out.oes*"oest.Gene3

oGene1

testseq.Gene1

testseq

out.oest.Gene1

"vi inseed"

baseml

estbranches

multidivtime multidivtime

paml2modelinf

multidivtime numbers

Estimation of branch lengths and 
their variance-covariance matrix

Estimation of rates and times 
based on the Bayesian method

Estimation of model parameters

multidistribute
Flow Chart



Posterior distribution

T : Internal node times (T0, T1,.....,Tk)

R : Rates (R0, R1,.....,Rk)

   : Parameter of rate autocorrelation (see next slide) 

C: Constraints on node times

X: Data

ν

The Metropolis-Hastings algorithm is used to 

approximate p(T,R, ν|X, C).

p(T,R, ν |X, C) =
p(X, T,R, ν |C)

p(X |C)

Thorne and Kishino (2005)



Rate Autocorrelation

ν : Rate autocorrelation parameter

•  determines the prior distribution for the rates 
on different branches given the internal node 
times.

•High  little rate autocorrelation
Low  strong rate autocorrelation

Thorne et al (1998)

p(T,R, ν |X, C) =
p(X, T,R, ν |C)

p(X |C)



Rate Autocorrelation

log (R2) and log (R3)

t1

t2
• Normal distribution

a mean equal to log (R0)
a variance equal to     x ν t1 + t2

2
So, the prior distribution of lognormal 
change of rate of R5 is sampled depends on,
but will differ from, the prior distribution from 
which R0 is sampled.

Thorne et al (1998)

A rate R0 is sampled from the prior 
distribution (gamma distribution), p(R0).

In this way, the joint probability density of the
rates at all nodes on the tree is defined for a 
given value of the rate at the root node.



Multilocus Data Analysis
T3

Rb0

Rb1

Rb2

Rb3

Rb4Rb5

Ra0

Ra1

Ra2

Ra3

Ra4Ra5

T2

T1

T0
Gene a Gene b

• Each gene is modeled as experiencing its own independent rate 

trajectory, i.e., the distributions of evolutionary rates among genes are 

priori uncorrelated.

• Rates at the root node for individual genes (Ra0 and Rb0) are 

independent realizations from a gamma distribution.

• Two approaches for autocorrelation rate parameter .

a = b    or a b.

a b

Thorne et al (1998)



Posterior Distribution

p(T,R, ν|X, C) =
p(X, T,R, ν|C)

p(X|C)

=
p(X|T,R, ν, C)p(T,R, ν|C)

p(X|C)

=
p(X|T,R, ν, C)p(R|T, ν, C)p(T |ν, C)p(ν|C)

p(X|C)

p(T,R, ν|C) = p(R|T, ν, C)p(T, ν|C)
= p(R|T, ν, C)p(T |ν, C)p(ν|C)

=
p(X|T,R)p(R|T, ν)p(T |C)p(ν)

p(X|C)

Value of (and C) does

not provide information 

about the data X.

=
p(X|B)p(R|T, ν)p(T |C)p(ν)

p(X|C)

B=(B0, B1,.....,Bk)

  Blanch length

p(X| T, R)  = p(X|B)

Thorne and Kishino (2005)



Posterior Distribution

p(T,R, ν|X, C) =
p(X|B)p(R|T, ν)p(T |C)p(ν)

p(X|C)

p(X | B):  Likelihood approximated with a multivariate normal 
distribution centered about the ML estimates of branch lengths B.

p(R | T, ): The prior distribution of rate evolution. This probability is
determined once the times T and the constant  is determined. 

p(T | C): The density p(T | C) is identical to the density p (T) up to a 
proportionality constant to. The p(T) is selected on the basis of 
simplicity of the Yule process.

p( ): The prior distribution for the rate change parameter.

Thorne and Kishino (2005)

Numerator

Likelihood Prior distribution
Posterior distribution

Marginal probability of the data



Metropolis-Hastings Algorithm

p(T,R, ν|X, C) =
p(X|B)p(R|T, ν)p(T |C)p(ν)

p(X|C)

p(X|C) =
∑ ∫ ∫ ∫ ∫

Posterior Probability Density dTdRdν

This is not pretty.

Denominator



Metropolis-Hastings Algorithm

Hastings ratio

p(T ′, R′, ν′ |X)
p(T,R, ν |X)

=
p(X |B′)p(R′ |T ′, ν′)p(T ′ |C)p(ν′)

p(X |B)p(R |T, ν)p(T |C)p(ν)

r = min

(
1,

p(T ′, R′, ν′ |X) J(T,R, ν |T ′, R′, ν′)
p(T,R, ν |X) J(T ′, R′, ν′ |T,R, ν)

)

Thorne et al (1998)

• Metropolis-Hastings Algorithm is adopted to obtain an approximately 
random sample from p(T, R, | X).

• Repeating many cycles of this procedure of random proposals followed by 
acceptance or rejection produces a Markov chain with a stationary 
distribution that is the desired posterior distribution p(T, R, , | X).

p(T,R, ν|X, C) =
p(X|B)p(R|T, ν)p(T |C)p(ν)

p(X|C)



Metropolis-Hastings Algorithm

Hastings ratio

p(T ′, R′, ν′ |X)
p(T,R, ν |X)

=
p(X |B′)p(R′ |T ′, ν′)p(T ′ |C)p(ν′)

p(X |B)p(R |T, ν)p(T |C)p(ν)

Proposal step for 

Proposal step for T

Proposal step for R

“Mixing” Step

r = min

(
1,

p(R′ |T ′, ν′)p(ν′)ν′

p(R |T, ν)p(ν)ν

)

r = min

(
1,

p(T ′, R′, ν′ |X) J(T,R, ν |T ′, R′, ν′)
p(T,R, ν |X) J(T ′, R′, ν′ |T,R, ν)

)

r = min

(
1,

p(R′ |T ′, ν′)p(T ′)(Ty − T0)
p(R |T, ν)p(T )(T ′

y − T ′
0)

)
r = min

(
1,

p(R′ |T ′, ν′)p(T ′)
p(R |T, ν)p(T )

1
M1

)

r = min

(
1,

p(X ′ |B′)p(R′ |T ′, ν′)R′
i

p(X |B)p(R |T, ν)Ri

)

Thorne et al (1998)



testseq.Gene1 Gene1.tree

Gene1.ctl

Gene1.out

modelinf.Gene1

hmmcntrl.dat

oest.Gene1

multicntrl.dat

tree.example
node.example
samp.example
ratio .example

tree.example
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oest.Gene2

example.tree

example.tree
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oGene1

testseq.Gene1

testseq

out.oest.Gene1

"vi inseed"
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multidivtime multidivtime

paml2modelinf

multidivtime numbers

Estimation of model parameters

multidistribute
Flow Chart

Transform baseml output files to 
estbranches input files



Modelinf.Gene1

F84 + G5 model

5 gamma categories

Base frequencies
(same values among categories)

Relative rates of categories
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Transform baseml output files to 
estbranches input files

Estimation of branch lengths and 
their variance-covariance matrix



oest.Gene1

Tree topology 
with branch 
length

variance-covariance matrix of branch lengths



testseq.Gene1 Gene1.tree

Gene1.ctl

Gene1.out

modelinf.Gene1

hmmcntrl.dat
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Estimation of model parameters
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Transform baseml output files to 
estbranches input files

Estimation of branch lengths and 
their variance-covariance matrix

Estimation of rates and times 
based on the Bayesian method



multicntrl.dat
Outfile of 3 genes from 
estbranches

MCMC generation setting

A priori expected time 
between tip and root

Mean of prior distribution for 
rate at root node

Mean of prior for autocorrelate
rate parameter,

Node constraints



testseq.Gene1 Gene1.tree

Gene1.ctl

Gene1.out

modelinf.Gene1

hmmcntrl.dat

oest.Gene1

multicntrl.dat
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Estimation of branch lengths and 
their variance-covariance matrix

Estimation of rates and times 
based on the Bayesian method

Estimation of model parameters

multidistribute
Flow Chart



multidistribute – outfile

• out.Gene1
summarizes posterior means of divergence times and rates,
and other information

• tree.Gene1
contains the tree definition of the chronogram

• ratio.Gene1
contains relative probability ratios for the parameter values 
sampled by MCMC

• node.Gene1
contains detailed information about the MCMC run

• samp.Gene1
contains samples from the Markov chain: they can be useful
for exploring convergence

Rutschmann (2005)



node.Gene1

Node number

Posterior distribution 
of divergence time

Standard deviation

95% credibility interval



tree.Gene1

Time scaled tree is shown using TreeView.



Programs for molecular clock-dating that
relax the clock assumption

no topology

Modified from Renner (2005)
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